Chem. Ber. 108, 664 -- 672 (1975)

Schwingungsspektren der Cyanodimethylmetall-Komplexe von Magnesium, Aluminium, Gallium und Indium

Joachim Müller, Fritjof Schmock, Achim Klopsch und Kurt Dehnicke*

Fachbereich Chemie der Universität Marburg/Lahn, D-3550 Marburg/Lahn, Lahnberge

Eingegangen am 20. August 1974

Tetramethylammoniumcyanid reagiert mit in Äther gelöstem Dimethylmagnesium unter Bildung von $[Me_4N]_4[Me_2MgCN]_4$, dessen komplexes Anion mit dem bereits bekannten, ebenfalls tetrameren Dimethylaluminiumcyanid $[Me_2AICN]_4$ isoelektronisch ist. Die Schwingungsspektren werden mitgeteilt und durch die Spektren der homologen Cyanide von Gallium und Indium ergänzt.

Vibrational Spectra of the Cyanodimethylmetal Complexes of Magnesium, Aluminium, Gallium, and Indium

Tetramethylammonium cyanide reacts with an ethereal solution of dimethylmagnesium to form $[NMe_4]_4[Me_2MgCN]_4$, the complex anion of which is isoelectronic with the known tetrameric dimethylaluminium cyanide $[Me_2AlCN]_4$. The vibrational spectra are reported together with those of the corresponding gallium and indium compounds.

Die ausgeprägte Eigenschaft des Cyanid-Ions, mit Hilfe der freien Elektronenpaare am C- und N-Atom in metallorganischen Verbindungen als sp-verbrückende Einheit zwischen zwei Metallatomen aufzutreten, ist an verschiedenen Beispielen belegt. Hierzu gehören die tetrameren Dimethylmetallcyanide [Me₂MCN]₄ (M = Al, Ga, In) $(2a-c)^{1}$, Komplexe des Typs [Me₃M - C = N ··· MMe₃]^{Θ} mit M = Al²), Ga³) und neuerdings auch kationische Komplexe wie zum Beispiel [MeHg - C = N - HgMe]^{\oplus 4}). Soeben berichteten wir über einen Cyanokomplex des Dimethylmagnesiums, [(Me₂Mg)₂CN]₂², bei dem neben verbrückenden Methylgruppen die Cyanogruppe ebenfalls als lineare Brückenbaugruppe fungiert⁵). Er wurde durch Einwirkung von überschüssigem Dimethylmagnesium auf [Me₄N]CN erhalten.

Wir fanden nun, daß sich bei Anwendung äquimolarer Mengenverhältnisse CN^{Θ} / Me₂Mg in ätherischer Phase gemäß Gl. (1) ein 1:1-Donator-Akzeptorkomplex bildet:

$$[(CH_3)_4N]^{\textcircled{O}} CN^{\bigcirc} + (CH_3)_2Mg \xrightarrow{\text{Ather}} [(CH_3)_4N]^{\textcircled{O}} [NCMg(CH_3)_2]^{\textcircled{O}}$$
(1)

Die Tendenz des Mg-Atoms nach Ausbildung der Koordinationszahl 4 und das Bestreben der CN-Gruppe, als linearer Brückenligand zu fungieren, sowie das Fehlen von charakteristischen Schwingungsfrequenzen für CH₃-Brücken⁶ legen für das

¹⁾ G. E. Coates und R. N. Mukherjee, J. Chem. Soc. 1963, 229.

²⁾ F. Weller und K. Dehnicke, J. Organomet. Chem. 36, 23 (1972).

³⁾ K. Dehnicke und I. L. Wilson, J. C. S. Dalton 1973, 1428.

⁴⁾ W. Morell und D. Breitinger, J. Organomet. Chem. 71, C 43 (1974).

⁵⁾ A. Klopsch und K. Dehnicke, Chem. Ber. 108, 420 (1975).

⁶⁾ P. Krohmer und J. Goubeau, Z. Anorg. Allg. Chem. 369, 238 (1969).

komplexe Anion die tetramere Struktur 1 nahe, die mit den Dimethylmetallcyaniden von Al, Ga und In 2a - c isostrukturell ist und mit der Aluminiumverbindung auch isoelektronisch. Die tetramere Moleküleinheit 2 ist durch kryoskopische Mol.-Massebestimmungen gesichert¹; in den Massenspektren (s. u.) läßt sich zumindest für 2a der um eine CH₃-Gruppe ärmere Molekülionenpeak des Tetrameren erkennen.

Da von den Verbindungen 2a-c schwingungsspektroskopisch nur die IR-Frequenzen der CN-Valenzschwingungen bekannt sind¹⁾, haben wir im Zusammenhang mit dem Schwingungsspektrum von 1 auch die IR- und Raman-Spektren von 2a-c registriert. Bei der Darstellung der Verbindungen 2a-c folgten wir bei 2a und c dem von *Coates* et al.¹⁾ beschriebenen Verfahren der Darstellung aus den Trimethylmetallen und HCN. Dagegen bereitete die Anwendung dieser Vorschrift auf **2b** bezüglich der Ausbeuten Schwierigkeiten. Einen praktisch vollständigen Stoffumsatz erhielten wir durch Verwendung von Trimethylgermaniumcyanid gemäß (2) in ätherischer Lösung:

 $(CH_3)_3Ga + (CH_3)_3GeCN \longrightarrow (CH_3)_2GaCN + Ge(CH_3)_4$ (2)

Zur Einführung der CN-Gruppe lassen sich auch (CH₃)₃SnCN und (CH₃)₃PbCN verwenden.

Schwingungsspektren

In Tab. 1 sind die Schwingungsspektren mit den Zuordnungsvorschlägen enthalten. Die Abb. 1, 2 geben die Schwingungsspektren der miteinander isoelektronischen Spezies 1 und 2a wieder.

Berücksichtigt man zunächst nur die Gerüstatome (ohne H-Atome), so ergibt die Erwartung für ein 20-atomiges Molekül 54 Grundschwingungen, davon bei Vorliegen der höchstmöglichen Symmetrie der Punktgruppe C_{4h} wegen des Symmetriezentrums je die Hälfte im IR- und Raman-Spektrum. Ein Blick auf Tab. 1 und Abb. 1, 2 in dem für die Gerüstschwingungen in Betracht kommenden Bereich unterhalb 700 cm⁻¹ zeigt, daß diese Erwartung nicht annähernd erfüllt ist. Wir beobachten sowohl für 1 als auch für 2a in diesem Bereich lediglich 9 Schwingungen und zudem keine Anzeichen von Alternativverhalten. Dies bedeutet, daß über die CN-Brücken hinweg keine Schwingungskopplung erfolgt, so daß die schwingungsspektroskopische Behandlung des Problems nur nach der lokalen Symmetrie der Mg- bzw. Al-Atome vorgenommen werden kann. Sie führt in dem vorliegenden Fall zur lokalen Symmetrie C_{s} , für die für das tetraedrische Gerüstfragment C M N insgesamt 9 Grundschwingungen (6A', 3A'') zu erwarten sind, davon 4 Valenzschwingungen (3A', 1A'') und 5 Deformationen (3A', 2A''). Diese Bedingungen stimmen sowohl nach der Anzahl der Banden als auch bezüglich ihrer Frequenzaufteilung nach Valenz- und Deformationsschwingungen bei beiden Verbindungen sehr gut mit dem Experiment überein (s. Tab. 1). Allgemein läßt sich feststellen, daß die Banden von 1 gegenüber entsprechenden Schwingungen von 2a deutlich langwellig verschoben sind, was in erster Linie dem Einfluß der bindungslockernden negativen Ladung von 1 zuzuschreiben ist. Dieser Einfluß macht sich auch auf die Lage der CN-Valenzschwingung bemerkbar, die gegenüber 1 (2145 cm⁻¹) nach 2223 cm⁻¹ verschoben ist und damit der Lage der

))]*[(CH ₃),N] ₄ [((1)	CH ₃) ₂ MgCN] ₄	[(CH ₃) ₂ A 2a	VICN]4	[(CH ₃) ₂ G	JaCN]4	[(CH ₃) ₂ [26	nCN]₄	
IR cm ⁻¹ Int. *)	Raman cm ⁻¹ Int.	IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	Zuordnung
3032 m 2960 s	3030 m 2980 s							vasCH3 [(CH3)4N] ^①
2875 st 2850 m	2920 s 2880 ss 2850 ss	2940 st	2942 m	2967 sst	2975 m-s 2961	2985 m	2995 s	vasCH ₃
2820 m 2779 st	2780 m	2895 st 2830 s	2896 m-st	2910 st	2911 m 2870 ss, sh	2925 m	2935 m	\ vsCH3
				2403 s		2308 s-m		$2 \times \delta_{s} CH_{3}$
2145 st	2141 m-st	2223 sst	2217 sst	2207 sst	2205 m-st	2172 st	2175 m-st	v12CN
2090 ss		2175 ss, sh		2161 ss 1806 ss		2130 ss, sh		vI3CN, vI2CI5N 8sCH3 +: vasMC2
				1765 s 1454 ss		1660 s		$\delta_s CH_3 + v_s MC_2$
1486 sst	1447 m							δ _{as} CH ₃ δ _{as} CH ₃ { ((CH ₃), NI [⊕]
1416 m 1405 ss 1287 s								SasCH ₃
1090 st 1072 m	1090 sst 1069 st	1200 sst	1198 m	1213 st 1206 sh	1208 m	1165 s	1162 st	₿ 8₅CH₃M−CH₃
		1050 ss		975 ss				

Tab. 1. Schwingungsspektren der Komplexe 1 und 2a-c

Ch					Tabelle I (Fo	rtsetzung)			
emisch	[(CH ₃) ₄ N] ₄ [(C	H ₃)2MgCN]4	[(CH ₃) ₂ / (2a	NICN]4	[(CH ₃) ₂ C (2h	GaCN]4	[(CH ₃) ₂ In (2c)	CN]4	
e Berich	IR cm ⁻¹ Int. *)	Raman cm ⁻¹ Int.	IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	Zuordnung
te Jał	948 sst	944 m							VasNC4 ICH > NI®
ırg.		750 st							vsNC4) ICHI
108					777 sh				
	530 st, sh	539 s-m	700 sst		747 sst		730 sst		{ pCH3
		528 s-m			705 m, sh	705 ss	690 ss, sh	685 s	
					608 st	608 s, sh	543 ss, sh	541 ss, sh	_
	502 sst	494 m	700 st	702 m	599 st	596 m-s	533 st	533 m	<pre>{ vasMC2</pre>
					590 st	589 m-s	525 st	523 m	
	455 s	453 st							8NC₄ [(CH₃)₄N] [⊕]
	425 m	419 st	586 st	582 m-st	551 st	549 sst	496 m 470 s	494 sst 445 ss, sh 425 s	v _s MC ₂
	371 st	369 s	510 st		429 sst	410-460 ss	365 sst, br	355 s	vM-(CN)
	290 ss	292 st	370 m-s	386 s	365 s	363 s			_
			290 s		356 s	342 s		342 s	
					344 m	330 ss, sh	235 m-s	281 s	/ vM –(CN)
					335 m				
					328 m				
					316 s				
	230 s	250 s	250 m	242 m		198 s		250 s	8MC2
	213 s	219 s	215 m—s	204 m	211 sst	168 22			
43				140 m 106 m		127 SS		130 m	
	•) sst = sehr star	k; st = stark; m	= mittel; s = sch	wach; ss = sehr sc	hwach; sh = Schul	ter; br = breit.			

CN-Valenzschwingung des ebenfalls CN-Brücken enthaltenden $[(Me_2Mg)_2CN]_2^{2\circ}$ -Komplexes (2155 cm⁻¹)⁵⁾ nahekommt. Somit besteht kein Zweifel, daß sich auch bei 1 CN-Brücken schwingungsspektroskopisch bestätigen lassen, obwohl die Lage von vCN am langwelligen Ende des für brückengebundene CN-Gruppen in Betracht kommenden Bereiches⁷⁾ liegt. Im Einklang mit der Erfahrung, wonach bei Beanspruchung der freien Elektronenpaare des CN^o-Ions wegen ihres antibindenden Charakters die CN-Bindungsstärke zunimmt, liegt die CN-Valenzschwingung von 1 gegenüber [Me₄N]CN (2050 cm⁻¹)⁸⁾ andererseits sehr deutlich kurzwelliger. In Übereinstimmung mit der Vorstellung, wonach die schwingungsspektroskopische Behandlung von 1 und 2a – c nach lokalen Symmetriebezirken sinnvoll ist, läßt sich auch für die CN-Valenzschwingung in allen Fällen der tetrameren Cyanide nur jeweils ein vCN erkennen, das zudem mit der entsprechenden Raman-Bande koinzidiert (s. Abb. 1 und 2).

Der in den IR-Spektren erkennbare, sehr schwache $vC \equiv N$ -Begleiter, der etwa $40-50 \text{ cm}^{-1}$ langwelliger auftritt, rührt von $v^{13}C \equiv N$ (bzw. ${}^{12}C \equiv {}^{15}N$) her.

Ein weiteres wichtiges Argument für die strukturelle Ähnlichkeit von 1 und 2a ist neben der auffallenden Ähnlichkeit der Spektren insbesondere das Fehlen von Schwingungsfrequenzen brückenbindender CH₃-Gruppen, wie sie sowohl im polymeren Dimethylmagnesium⁶⁾ als auch in verschiedenen mehrzentrenverbrückten Donator-Akzeptorkomplexen von $(CH_3)_2Mg$ angetroffen werden ^{5.9)}. Tetramere Dimethylmetall-Verbindungen liegen außer in den hier besprochenen Cyaniden z. B. im $[(CH_3)_2AIF]_4$ vor, in dem nach Elektronenbeugungsmessungen die F-Atome zwar keine gestreckten, wohl aber sehr große Bindungswinkel (146°) beanspruchen¹⁰⁾, was zumindest in flüssiger Phase durch die schwingungsspektroskopisch nachgewiesene Planarität des Al₄F₄-Ringes¹¹⁾ zustandekommt. Weitere Beispiele sind $[(CH_3)_2GaOH]_4^{12)}$ und das allerdings thermisch unbeständige $[(CH_3)_2GaF]_4^{13)}$. Zusammenfassend wurde hierüber von *Weidlein*¹⁴⁾ berichtet.

Wesentlich problematischer gestaltet sich die Deutung der Schwingungsspektren der homologen Cyanide des Galliums (2b) und Indiums (2c). In dem für die Klärung ergiebigen Gerüstschwingungs-Bereich der Spektren beobachtet man z. B. neben der symmetrischen $M(CH_3)_2$ -Valenzschwingung bei den antisymmetrischen $Ga(CH_3)_2$ und $In(CH_3)_2$ -Valenzschwingungen jeweils 3 Banden, die zudem für beide spektroskopische Effekte zu identischen Frequenzlagen führen (Tab. 1). Desgleichen treten für die Metall – (CN)-Valenzschwingungen jeweils mehrere, dicht beieinander liegende Banden auf. Diese Befunde lassen sich nicht mehr auf der Grundlage lokaler Symmetriebezirke innerhalb der Moleküle verstehen, da auch bei der niedrigsten Symmetrie (C_1)

für das Gerüstfragment $\begin{array}{c} C \\ C' \\ C' \end{array} M \xrightarrow{N}$ insgesamt nur 4 Valenzschwingungen auftreten

⁷⁾ H. Siebert, Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie, S. 154, Springer, Berlin-Heidelberg-New York 1966.

⁸⁾ F. Weller, Dissertation, Univ. Marburg/L. 1971.

⁹⁾ G. E. Parris und E. C. Ashby, J. Organomet. Chem. 72, 1 (1974).

¹⁰⁾ G. Gundersen, T. Haugen und A. Haaland, J. Organomet. Chem. 54, 77 (1973).

¹¹⁾ J. Weidlein und V. Krieg, J. Organomet. Chem. 11, 9 (1968).

¹²⁾ G. S. Smith und J. L. Hoard, J. Amer. Chem. Soc. 81, 3907 (1959).

¹³⁾ H. Schmidbaur und H. F. Klein, Chem. Ber. 101, 2278 (1968).

¹⁴⁾ J. Weidlein, J. Organomet. Chem. 49, 257 (1973).

Í.		1	q		c	
m e	rel. Intensität (%)	m e	rel. Intensität (%)	m e	rel. Intensität (%)	Zuordnung ^{b)}
		69 71	(17) (16)	113	(99)	Metall-
		84 20	60	001	į	M - CN+
58	(35)	00	(7)	061	(7)	M = CN + C H
		110 123	(14) (8)			$M - CH_3$
109.4	(2)			256 286	(11)	2 M ⁺ (CN,4CH ₃) 2 M ⁺ (-CN,2CH ₄)
		199 201 203	(7) (14) (8)			$\left\{ 2 M^{+} (- 2CN, + H) \right\}$
		217 219 221	(4) (6) (2)			2 M ⁺ (-4CH ₃ , ÷ H, + CN
140	(75)	224 226 228	(18) (14) (4)	314 316	(5) (100)	2 M ⁺ (- CN)
		Ì	E.	317	(2)	mit ¹³ C
175 191	(4) (5)			327	(2)	2 M + (- CH ₃) 3 M + (- 5CH ₃ , + H) 2 M ⁺ (- CH ₃ , - H, + CN)
		315 317 319	(£) (3)			$\begin{cases} 3 M^{+} (- 4 C H_{3}) \end{cases}$
234	(100)	360 362 364	383	496 498	(2) (34)	3 M ⁺ (– CH ₃)
235	(4)	-		499	(2)	mit ¹³ C
317 318	(66) (5)					$M^{+} (- CH_{3})$ mit 13C

können. Gegen die Annahme einer *intra*molekularen Schwingungskopplung sprechen einerseits die Massenspektren von **2b** und **c**, in denen aus dem Fragmentierungsmuster gegenüber **2a** auf noch stärker polare M···CN···M-Brücken geschlossen werden muß (Tab. 2). Eine über diese Brücken hinweg wahrnehmbare Schwingungskopplung würde zudem in jedem Falle ein mehrfaches Auftreten von vCN bedingen, was nicht beobachtet wird. Wahrscheinlich ist daher eine *inter*molekulare Schwingungskopplung, die eine Folge der Packungsverhältnisse im kristallinen Zustand sein kann. Diese Annahme ist angesichts der größeren Atomradien von Ga und In durchaus plausibel. Kristallstrukturbestimmungen von Diäthylindium-thioacetat¹⁵⁾ und Diäthylindiumacetat¹⁶⁾ bestätigen zumindest beim Indium die Fähigkeit, die in den angeführten Beispielen zur Koordinationszahl 5 bzw. 6 für die In-Atome führt. Eine endgültige schwingungsspektroskopische Klärung des Problems durch Aufnahme der Spektren in Lösung scheitert an der zu geringen Löslichkeit von **2b** und **c** in unpolaren Lösungsmitteln, jedoch lassen sich nach den vorliegenden Messungen für den kristallinen Zustand völlig planare Ringsysteme für die Moleküle **2b** und **c** ausschließen.

Massenspektreu

Tab. 2 enthält die wichtigsten Massenzahlen von 2a - c mit den Zuordnungen. Man erkennt nur für die Aluminiumverbindung (2a) den (um eine CH₃-Gruppe ärmeren) Molekül-Ionenpeak, während für das Gallium- (2b) bzw. Indiumhomologe (2c) als höchste Massenzahl nur das, um wiederum jeweils eine CH₃-Gruppe ärmere, trimere Molekül-Ion auftritt. Vermutlich äußern sich hierin die bei 2b und c stärker polaren Bindungsanteile der CN-verbrückten Dimethylmetallbaugruppen, die unter den angewandten Versuchsbedingungen ein unzersetztes Verdampfen der tetrameren Moleküleinheiten nicht mehr zulassen. Diese Befunde korrelieren mit den Ergebnissen der Schwingungsspektren und mit der von 2a nach c abnehmenden Löslichkeit in unpolaren Lösungsmitteln¹⁾.

Beachtenswert erscheint die bei allen Typen 2a-c relativ große Häufigkeit der Fragmente $(CH_3)_2M-CN-M(CH_3)_2^+$ (M = Al, Ga, In), deren darin zum Ausdruck kommende große Stabilität an die eingangs erwähnten Beispiele der metallorganisch sp-koordinierten Cyanogruppe erinnert. Demgegenüber ließ sich von 1 wegen des geringen Dampfdruckes kein verwertbares Massenspektrum erhalten.

Herrn Dr. R. Schmitt danken wir für die Ausführung der Raman-Spektren; der Fonds der Deutschen Chemischen Industrie unterstützte diese Arbeit in dankenswerter Weise.

Experimenteller Teil

Sämtliche Arbeiten müssen unter sorgfältig gereinigtem Stickstoff ausgeführt werden; die verwendeten Glasgeräte und Lösungsmittel wurden entsprechend behandelt. – IR-Spektren: Perkin-Elmer-Gerät Typ 225, zwischen CsJ-Scheiben als Nujol- bzw. Hostaflonverreibungen; Raman-Spektren: Cary 83, Laser-Anregung 6145 Å; Massenspektren: CH-4-Gerät der Atlas-Werke.

Tetrakis(tetramethylammonium)-tetra- μ -cyano-tetrakis(dimethylmagnesat) [(CH₃)₄N]₄-[(CH₃)₂MgCN]₄ (1): 0.42 g feingepulvertes [(CH₃)₄N]CN³) (4.2 mmol) werden bei 20°C

¹⁵⁾ H. D. Hausen, Z. Naturforsch. 27 B, 82 (1972).

¹⁶⁾ H. D. Hausen, J. Organomet. Chem. 39, C37 (1972).

mit der äquimolaren Menge einer äther. Dimethylmagnesium-Lösung¹⁷⁾ (14.0 ml, 0.30 M) 24 h gerührt. Anschließend wird der Niederschlag abfiltriert, mit Äther gewaschen und i. Hochvak. getrocknet. Ausb. praktisch vollständig. Farblose, sehr hygroskopische, sauerstoffempfindliche Kristalle vom Schmp. 168–170°C, die in Benzol, Diäthyläther und Tetrahydrofuran unlöslich sind.

Zur Darstellung von 2a und c bedienten wir uns des in der Literatur beschriebenen Verfahrens¹; es wurde Übereinstimmung mit den dort angegebenen Schmelzpunkten (90 bzw. 147°C) festgestellt.

Tetra- μ -cyano-tetrakis(dimethylgallat), [(CH₃)₂GaCN)₄ (2b): 1.15 g Trimethylgallium (10 mmol) werden mit 1.43 g Trimethylgermylcyanid¹⁸⁾ (10 mmol) in 20 ml Äther versetzt. Nach 2 h zieht man i. Vak. das Lösungsmittel und gebildetes Tetramethylgerman ab und sublimiert den Rückstand bei 90°C/10⁻³ Torr. Ausb. 1.1 g (70%), Schmp. 81°C (Lit.¹⁾ 79°C).

GaC₃H₆N (125.8) Ber. C 28.64 H 4.81 N 11.13 Gef. C 28.3 H 4.7 N 11.4

[334/74]

 ¹⁷⁾ J. Laemmle, E. C. Ashby und H. M. Neumann, J. Amer. Chem. Soc. 93, 5120 (1971).
¹⁸⁾ D. Seyferth und N. Kahlen, J. Org. Chem. 25, 809 (1960).